Tryptophan-tryptophan energy migration as a tool to follow apoflavodoxin folding.

نویسندگان

  • Nina V Visser
  • Adrie H Westphal
  • Arie van Hoek
  • Carlo P M van Mierlo
  • Antonie J W G Visser
  • Herbert van Amerongen
چکیده

Submolecular details of Azotobacter vinelandii apoflavodoxin (apoFD) (un)folding are revealed by time-resolved fluorescence anisotropy using wild-type protein and variants lacking one or two of apoFD's three tryptophans. ApoFD equilibrium (un)folding by guanidine hydrochloride follows a three-state model: native <--> unfolded <--> intermediate. In native protein, W128 is a sink for Förster resonance energy transfer (FRET). Consequently, unidirectional FRET with a 50-ps transfer correlation time occurs from W167 to W128. FRET from W74 to W167 is much slower (6.9 ns). In the intermediate, W128 and W167 have native-like geometry because the 50-ps transfer time is observed. However, non-native structure exists between W74 and W167 because instead of 6.9 ns the transfer correlation time is 2.0 ns. In unfolded apoFD this 2.0-ns transfer correlation time is also detected. This decrease in transfer correlation time is a result of W74 and W167 becoming solvent accessible and randomly oriented toward one another. Apparently W74 and W167 are near-natively separated in the folding intermediate and in unfolded apoFD. Both tryptophans may actually be slightly closer in space than in the native state, even though apoFD's radius increases substantially upon unfolding. In unfolded apoFD the 50-ps transfer time observed for native and intermediate folding states becomes 200 ps as W128 and W167 are marginally further separated than in the native state. Apparently, apoFD's unfolded state is not a featureless statistical coil but contains well-defined substructures. The approach presented is a powerful tool to study protein folding.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Direct conjugation of semiconductor nanocrystals to a globular protein to study protein-folding intermediates.

In this Article, we study the development of semiconductor nanocrystals (quantum dots of average diameter less than 2 nm) directly conjugated to a transporter protein human serum albumin (HSA) as fluorescent biological labels. Förster resonance energy transfer (FRET) from the amino acid tryptophan (Trp214) to quantum dot in HSA is monitored to follow the local and global changes in the protein ...

متن کامل

5-fluorotryptophan as dual probe for ground-state heterogeneity and excited-state dynamics in apoflavodoxin.

The apoflavodoxin protein from Azotobacter vinelandii harboring three tryptophan (Trp) residues, was biosynthetically labeled with 5-fluorotryptophan (5-FTrp). 5-FTrp has the advantage that chemical differences in its microenvironment can be sensitively visualized via (19)F NMR. Moreover, it shows simpler fluorescence decay kinetics. The occurrence of FRET was earlier observed via the fluoresce...

متن کامل

Macromolecular crowding compacts unfolded apoflavodoxin and causes severe aggregation of the off-pathway intermediate during apoflavodoxin folding.

To understand how proteins fold in vivo, it is important to investigate the effects of macromolecular crowding on protein folding. Here, the influence of crowding on in vitro apoflavodoxin folding, which involves a relatively stable off-pathway intermediate with molten globule characteristics, is reported. To mimic crowded conditions in cells, dextran 20 at 30% (w/v) is used, and its effects ar...

متن کامل

Reduced fluorescence lifetime heterogeneity of 5-fluorotryptophan in comparison to tryptophan in proteins: implication for resonance energy transfer experiments.

Tryptophan (Trp), an intrinsically fluorescent residue of proteins, has been used widely as an energy donor in fluorescence resonance energy transfer (FRET) experiments aimed at measuring intramolecular distances and distance distributions in protein folding-unfolding reactions. However, the high level of heterogeneity associated with the fluorescence lifetime of tryptophan, even in single-tryp...

متن کامل

Folding Mechanism of Beta-Hairpin Trpzip2: Heterogeneity, Transition State and Folding Pathways

We review the studies on the folding mechanism of the beta-hairpin tryptophan zipper 2 (trpzip2) and present some additional computational results to refine the picture of folding heterogeneity and pathways. We show that trpzip2 can have a two-state or a multi-state folding pattern, depending on whether it folds within the native basin or through local state basins on the high-dimensional free ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biophysical journal

دوره 95 5  شماره 

صفحات  -

تاریخ انتشار 2008